Smooth James-Stein model selection against erratic Stein unbiased risk estimate to select several regularization parameters

نویسنده

  • SYLVAIN SARDY
چکیده

Smooth James-Stein thresholding-based estimators enjoy smoothness like ridge regression and perform variable selection like lasso. They have added flexibility thanks to more than one regularization parameters (like adaptive lasso), and the ability to select these parameters well thanks to a unbiased and smooth estimation of the risk. The motivation is a gravitational wave burst detection problem from several concomitant high-frequency time series. A wavelet-based esti-mator is developed to combine information from all captors by block-thresholding multiresolution coefficients. We derive a universal threshold , an information criterion and an oracle inequality for this estimator. Smooth James-Stein thresholding is then employed in parametric linear regression for which we derive a formula for unbiased risk estimation. 1 Smooth James Stein 2 We perform a Monte-Carlo simulation to quantify the improvement and investigate the oracle property of smooth adaptive lasso empirically. Introducing the smoothness parameter allows smooth versions of existing estimators, for which we derive their equivalent degrees of freedom. Conversely, letting the smoothness parameter tend to one, we derive the equivalent degrees of freedom of lasso, adaptive lasso and group lasso. So far, only that of lasso is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection

Algorithms to solve variational regularization of ill-posed inverse problems usually involve operators that depend on a collection of continuous parameters. When these operators enjoy some (local) regularity, these parameters can be selected using the socalled Stein Unbiased Risk Estimate (SURE). While this selection is usually performed by exhaustive search, we address in this work the problem...

متن کامل

A Novel NeighShrink Correction Algorithm in Image Denoising

Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...

متن کامل

Magnetic Resonance in Medicine 71:1760–1770 (2014) Monte Carlo SURE-Based Parameter Selection for Parallel Magnetic Resonance Imaging Reconstruction

Purpose: Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein’s unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods th...

متن کامل

Monte Carlo SURE-based parameter selection for parallel magnetic resonance imaging reconstruction.

PURPOSE Regularizing parallel magnetic resonance imaging (MRI) reconstruction significantly improves image quality but requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter selection based on Stein's unbiased risk estimate that minimizes the multichannel k-space mean squared error (MSE). We automatically tune parameters for image reconstruction methods tha...

متن کامل

James-Stein state filtering algorithms

In 1961, James and Stein discovered a remarkable estimator that dominates the maximum-likelihood estimate of the mean of a p-variate normal distribution, provided the dimension p is greater than two. This paper extends the James–Stein estimator and highlights benefits of applying these extensions to adaptive signal processing problems. The main contribution of this paper is the derivation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011